A Note on Evaluation of Temporal Derivative of Hypersingular Integrals over Open Surface with Propagating Contour

نویسندگان

  • Dawid Jaworski
  • Aleksandr Linkov
  • Liliana Rybarska-Rusinek
چکیده

The short note concerns with elasticity problems involving singular and hypersingular integrals over open surfaces, specifically cracks, with the contour propagating in time. Noting that near a smooth part of a propagating contour the state is asymptotically plane, we focus on 1D hypersingular integrals and employ complex variables. By using the theory of complex variable singular and hypersingular integrals, we show that the rule for evaluation of the temporal derivative is the same as that for proper integrals. Being applied to crack problems the rule implies that the temporal derivative may be evaluated by differentiation under the integral sign.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flux and traction boundary elements without hypersingular or strongly singular integrals

The present paper deals with a boundary element formulation based on the traction elasticity boundary integral equation (potential derivative for Laplace’s problem). The hypersingular and strongly singular integrals appearing in the formulation are analytically transformed to yield line and surface integrals which are at most weakly singular. Regularization and analytical transformation of the ...

متن کامل

Solving the hypersingular boundary integral equation for the Burton and Miller formulation.

This paper presents an easy numerical implementation of the Burton and Miller (BM) formulation, where the hypersingular Helmholtz integral is regularized by identities from the associated Laplace equation and thus needing only the evaluation of weakly singular integrals. The Helmholtz equation and its normal derivative are combined directly with combinations at edge or corner collocation nodes ...

متن کامل

Direct Evaluation of Hypersingular Galerkin Surface Integrals. II

Direct boundary limit algorithms for evaluating hypersingular Galerkin surface integrals have been successful in identifying and removing the divergent terms, leaving finite integrals to be evaluated. This paper is concerned with the numerical computation of these multi-dimensional integrals. The integrands contain a weakly singular logarithmic term that is difficult to evaluate directly using ...

متن کامل

Differentiability of strongly singular and hypersingular boundary integral formulations with respect to boundary perturbations

In this paper, we establish that the Lagrangian-type material differentiation formulas, that allow to express the first-order derivative of a (regular) surface integral with respect to a geometrical domain perturbation, still hold true for the strongly singular and hypersingular syrface integrals usually encountered in boundary integral formulations. As a consequence, this work supports previou...

متن کامل

Evaluation of supersingular integrals : Second - order boundary derivatives ‡

The boundary integral representation of second-order derivatives of the primary function involves secondorder (hypersingular) and third-order (supersingular) derivatives of the Green’s function. By defining these highly singular integrals as a difference of boundary limits, interior minus exterior, the limiting values are shown to exist. With a Galerkin formulation, coincident and edge-adjacent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 120  شماره 

صفحات  -

تاریخ انتشار 2015